how do i get a metric, that shows the average number of results for one event per month, visualiozed over 6 months
If you do not see "Average" in the measurement dropdown, it may be because of the type of metric or event you have selected. According to the knowledge sources, "Average" is available as a measurement when you are aggregating a numeric property of an event (using "Aggregate Property" or "Aggregate Property per User")—not for simple event counts.Here’s how to access "Average": 1. Select your event in the Insights report. 2. Change the measurement by clicking on the dropdown (bottom left of the metric block). 3. Choose "Aggregate Property" or "Aggregate Property per User". 4. Select a numeric property of your event (e.g., "duration", "amount"). 5. Now, the aggregation options (including "Average") will appear, allowing you to select "Average" as the aggregation method.If you are only counting events (not aggregating a property), "Average" will not be available. In that case, you may want to use "Frequency per User" and then aggregate by "Average" to see the average number of events per user.> The following functions have additional aggregation options which you will be prompted to select:
Aggregate Property: Sum, Average, Median, Distinct Count, Percentiles, Minimum, Maximum Aggregate Property per User: Sum, Average, Distinct value count, Minimum, Maximum
Docs / Insights: MeasurementsIf you still do not see "Average" after following these steps, it may be due to the type of data you are working with or the specific configuration of your report.
kapa.ai is still learning and improving, please let me know how I did by reacting below.
ℹ️ Tip: Mention @kapa.ai in the thread for follow-ups or DM the app for 1-to-1 help.
Let me check the knowledge base for you again. One moment! 📚
To set "average" as your measurement in a Mixpanel Insights report, follow these steps: 1. Add or select your metric/event in the Insights report. 2. Locate the measurement dropdown: This is typically found at the bottom left area of the metric block you are configuring. It may display a default like "Unique Users" or "Total" initially. 3. Click on the dropdown and select "Average" from the list of available measurements. If you are working with event property values, you may need to select the specific property first, then choose "Average" as the aggregation method.The documentation states:
The measurement is chosen at the bottom left area of the metric. ...selecting any of these functions gives you the option to choose different ways to aggregate this data. The default aggregation is Average, which you can click on to select a different option such as distribution, median, 25/75/90th percentiles, minimum, and maximum.
Docs / Reports Docs / Insights: MeasurementsIf you do not see "Average" as an option, ensure you are using a measurement type that supports it, such as "Aggregate Property" or "Aggregate Property per User".Summary: - The measurement dropdown is at the bottom left of the metric block. - Select "Average" from this dropdown to set your metric to average.
kapa.ai is still learning and improving, please let me know how I did by reacting below.
ℹ️ Tip: Mention @kapa.ai in the thread for follow-ups or DM the app for 1-to-1 help.
Let me check the knowledge base for you again. One moment! 📚
Um verschiedene Einteilungen in Customer Journeys für ein Produkt vorzuschlagen und Usability-Verbesserungen zu empfehlen, kann Mixpanel-Analytics wie folgt genutzt werden:
Vorschläge für Customer Journey-Einteilungen
1. Onboarding Journey - Schritte: Anmeldung → E-Mail-Bestätigung → Erstes Login → Erste Aktion im Produkt. - Ziel: Nutzer schnell zum „Aha“-Moment führen, an dem sie den Wert des Produkts erkennen. - Analyse: Wo brechen Nutzer ab? Wie viele erreichen den „Aha“-Moment? Gibt es wiederkehrende Support-Anfragen zu bestimmten Schritten? Mehr dazu2. Feature Adoption Journey - Schritte: Erstes Feature-Engagement → Wiederholte Nutzung → Nutzung fortgeschrittener Features. - Ziel: Verstehen, welche Features besonders häufig oder selten genutzt werden und warum. - Analyse: Segmentierung nach Nutzertypen, um zu sehen, welche Gruppen welche Features nutzen. Mehr dazu3. Retention & Churn Journey - Schritte: Wiederkehrende Nutzung → Inaktivität → Reaktivierungsversuche. - Ziel: Identifizieren, wann und warum Nutzer abspringen. - Analyse: Nutzung von Kohorten-Analysen, um Muster bei abwandernden Nutzern zu erkennen. Mehr dazu4. Conversion Journey - Schritte: Kostenloser Test → Feature-Nutzung → Upgrade auf Bezahlversion. - Ziel: Optimierung der Conversion-Rate. - Analyse: Funnels nutzen, um Drop-offs im Konvertierungsprozess zu identifizieren. Mehr dazu
Usability-Verbesserungen (basierend auf Mixpanel-Insights)
- Friction Points identifizieren und reduzieren: Analysiere, an welchen Schritten Nutzer besonders häufig abbrechen, und vereinfache diese. Beispiel: Ein unnötiger E-Mail-Bestätigungsschritt kann zu hohem Drop-off führen – ggf. entfernen oder vereinfachen. Beispiel aus der Praxis- Onboarding vereinfachen: Klare, intuitive Workflows für Anmeldung und erste Nutzung. Tooltips, Checklisten und Erfolgsmeldungen helfen, Nutzer zu motivieren und zu führen. Best Practices- Segmentierung nutzen: Unterschiedliche Nutzergruppen (z.B. nach Region, Gerät, Aktivitätslevel) unterschiedlich ansprechen und gezielt unterstützen. Segmentierung und Kohorten- Schneller zum „Aha“-Moment: Analysiere, wie lange Nutzer brauchen, um den Wert des Produkts zu erkennen, und optimiere die Journey, um diesen Moment zu beschleunigen. Aha-Moment beschleunigen- Self-Service stärken: Hilfeseiten, In-App-Guides und FAQ leicht zugänglich machen, um Support-Anfragen zu reduzieren und Nutzer zu befähigen, eigenständig Probleme zu lösen. Self-Serve-ModelleFazit: Mit Mixpanel kannst du Customer Journeys datenbasiert analysieren, segmentieren und gezielt Usability-Verbesserungen ableiten. Die wichtigsten Hebel sind: Friction reduzieren, Onboarding optimieren, Segmentierung nutzen und den Weg zum „Aha“-Moment verkürzen.
kapa.ai is still learning and improving, please let me know how I did by reacting below.
ℹ️ Tip: Mention @kapa.ai in the thread for follow-ups or DM the app for 1-to-1 help.
Let me check the knowledge base for you again. One moment! 📚
To get a metric that shows the average number of results for one event per month, visualized over 6 months in Mixpanel, you should use the Insights report with the following steps: 1. Select the Event: In the Insights report, choose the event you want to analyze. 2. Choose the Measurement: Set the measurement to "Average" for the event. This will calculate the average number of times the event occurred. 3. Set the Time Interval: Set the time interval to "Month" to visualize the data per month. 4. Set the Date Range: Choose a date range that covers the last 6 months. 5. Visualize: The default line chart will show the average number of event occurrences per month over the selected 6-month period. You can switch to other chart types if preferred.Example in Mixpanel UI: - Behavior: Select your event (e.g., "Search Result"). - Measurement: Choose "Average" from the measurement dropdown. - Time Interval: Set to "Month". - Date Range: Last 6 months.This will display a chart with each point representing the average number of times the event occurred in each month over the past 6 months. You can further customize the visualization as needed.For more details on measurements and visualizations in Insights, see the documentation on Measurements and Basic Features in Insights reports.
kapa.ai is still learning and improving, please let me know how I did by reacting below.
ℹ️ Tip: Mention @kapa.ai in the thread for follow-ups or DM the app for 1-to-1 help.
Hi Tobias, Please stand by as I search the Mixpanel knowledge base for an AI-powered answer. I normally take about 15 seconds or so. In case AI cannot answer your question, feel free to reach out to Mixpanel support at mixpanel.com/get-support. If you have follow-up questions for this thread, please tag me again with your question: @kapa.ai <follow-up question> 👋
Feel free to ask a follow-up question once I've answered by mentioning me with @kapa.ai